论文标题

使用混合数据和物理驱动的模型对电机的性能分析

Performance Analysis of Electrical Machines Using a Hybrid Data- and Physics-Driven Model

论文作者

Parekh, Vivek, Flore, Dominik, Schöps, Sebastian

论文摘要

在电机的设计阶段,有限元(Fe)模拟通常用于数值优化性能。磁静态Fe模拟的输出表征了电机的电磁行为。它通常包括中间措施,例如非线性铁损耗,电磁扭矩和每个工作点的通量值,以计算关键性能指标(KPI)。我们提出了一种数据驱动的深度学习方法,该方法用深神经网络(DNN)取代了计算重的FE计算。 DNN经过大量存储的FE数据,以监督的方式进行了培训。在学习过程中,网络响应(中间度量)被作为基于物理的后处理的输入,以估计特征图和KPI。结果表明,中间度量的预测以及KPI的后续计算接近新机器设计的地面真相。我们表明,这种混合方法在模拟过程中产生了灵活性。最后,与现有的基于神经网络的直接预测方法相比,提出的混合方法被定量地进行了数量的比较。

In the design phase of an electrical machine, finite element (FE) simulation are commonly used to numerically optimize the performance. The output of the magneto-static FE simulation characterizes the electromagnetic behavior of the electrical machine. It usually includes intermediate measures such as nonlinear iron losses, electromagnetic torque, and flux values at each operating point to compute the key performance indicators (KPIs). We present a data-driven deep learning approach that replaces the computationally heavy FE calculations by a deep neural network (DNN). The DNN is trained by a large volume of stored FE data in a supervised manner. During the learning process, the network response (intermediate measures) is fed as input to a physics-based post-processing to estimate characteristic maps and KPIs. Results indicate that the predictions of intermediate measures and the subsequent computations of KPIs are close to the ground truth for new machine designs. We show that this hybrid approach yields flexibility in the simulation process. Finally, the proposed hybrid approach is quantitatively compared to existing deep neural network-based direct prediction approach of KPIs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源