论文标题

Shannon熵和平等时间对称量子步行中的扩散系数

Shannon Entropy and Diffusion Coeffcient in Parity-Time Symmetric Quantum Walks

论文作者

Tian, Zhiyu, Liu, Yang, Luo, Le

论文摘要

非热拓扑边缘状态具有许多有趣的特性,但到目前为止,主要是通过庞大的对应关系讨论的。在这里,我们建议使用扩散系数的批量特性来探测拓扑状态并探索其动力学。发现扩散系数可以显示出独特的特征,其拓扑相变(PT) - 对称非对称非荷米式离散时间步行以及Hermitian的拓扑相变,尽管人工边界并非由无均匀的量子步行构建。对于冬宫系统,当系统接近拓扑相变时,在扩散系数中出现了转折点和突然的变化,而在微不足道的拓扑状态下它保持稳定。对于非热系统的系统,除了与拓扑跃迁相关的特征外,PT对称性折叠相的扩散系数显示出具有峰结构的突然变化。此外,发现量子步行的香农熵与扩散系数直接相关。此处介绍的数值结果可能为研究非热量子步行系统中的拓扑状态开辟了新的途径。

Non-Hermitian topological edge states have many intriguing properties, but have so far mainly been discussed in terms of bulk-boundary correspondence. Here we propose to use a bulk property of diffusion coefficients for probing the topological states and exploring their dynamics. The diffusion coefficient is found to show unique features with the topological phase transitions driven by paritytime( PT)-symmetric non-Hermitian discrete-time quantum walks as well as by Hermitian ones, despite artificial boundaries are not constructed by inhomogeneous quantum walk. For a Hermitian system, a turning point and abrupt change appears in the diffusion coefficient when the system is approaching the topological phase transition, while it remains stable in the trivial topological state. For a non-Hermitian system, except for the feature associated to the topological transition, the diffusion coefficient in the PT-symmetric-broken phase demonstrates an abrupt change with a peak structure. In addition, the Shannon entropy of the quantum walk is found to exhibit a direct correlation with the diffusion coefficient. The numerical results presented here may open up a new avenue for studying the topological state in Non-Hermitian quantum walk systems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源