论文标题

超出均质化的超材料本征?

Metamaterial Eigenmodes beyond Homogenization

论文作者

Günzler, Antonio, Schumacher, Cedric, Saba, Matthias

论文摘要

超材料均质化理论通常以零顺序有效的粗近似值开始,例如小频率,波矢量和材料填充分数。在某些情况下,它们仍然超过其最初的假设令人惊讶地稳健,例如元素包含的麦克斯韦 - 加内特理论良好,可以为填充远高于其理论局限性而产生可靠的结果。在这里,我们提出了麦克斯韦方程的严格解决方案,该方程是采用绿色 - 盖尔金的组合程序的二元定期材料的,以获得该材料的evaneascent floquet eigenmodes的低维本质问题。以其一般形式,我们的方法提供了多价值复杂浮标带的准确解,目前无法使用已建立的求解器获得。因此,它在同质理论自然分解的方案中被证明是有效的。对于以最低顺序的小频率和波数,我们的方法简化了2D缸和3D球形包装的麦克斯韦 - 加内特结果。因此,它提供了缺少的解释,为什么麦克斯韦·加内特(Maxwell-Garnett)可以很好地效果达到$ 50 \%$的极高填充部分,具体取决于基本材料,只要夹杂物安排在各向同性晶格上。

Metamaterial homogenization theories usually start with crude approximations that are valid in certain limits in zero order, such as small frequencies, wave vectors and material fill fractions. In some cases they remain surprisingly robust exceeding their initial assumptions, such as the well-established Maxwell-Garnett theory for elliptical inclusions that can produce reliable results for fill fractions far above its theoretical limitations. We here present a rigorous solution of Maxwell's equations in binary periodic materials employing a combined Greens-Galerkin procedure to obtain a low-dimensional eigenproblem for the evanescent Floquet eigenmodes of the material. In its general form, our method provides an accurate solution of the multi-valued complex Floquet bandstructure, which currently cannot be obtained with established solvers. It is thus shown to be valid in regimes where homogenization theories naturally break down. For small frequencies and wave numbers in lowest order, our method simplifies to the Maxwell-Garnett result for 2D cylinder and 3D sphere packings. It therefore provides the missing explanation why Maxwell-Garnett works well up to extremely high fill fractions of approximately $50\%$ depending on the base materials, provided the inclusions are arranged on an isotropic lattice.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源