论文标题

使用文字的知识图嵌入方法用于作者名称歧义的方法

A Knowledge Graph Embeddings based Approach for Author Name Disambiguation using Literals

论文作者

Santini, Cristian, Gesese, Genet Asefa, Peroni, Silvio, Gangemi, Aldo, Sack, Harald, Alam, Mehwish

论文摘要

学术数据正在不断增长,其中包含来自大量场所的文章信息,包括会议,期刊等。已采取许多计划将学术数据作为知识图(KGS)提供。这些努力标准化这些数据并使其可访问的努力也导致了许多挑战,例如探索学术文章,模棱两可的作者等。这项研究更具体地针对了作者名称歧义歧义(和)对学术kgs的问题,并提出了一个新颖的框架,实际上是作者命名歧义(土地),该框架使用了知识图(kens),使用了多个kens(kges)的文献。该框架基于三个组成部分:1)多模式符号,2)阻止过程,最后,3)分层聚集聚类。已经对两个新创建的kg进行了广泛的实验:(i)从1978年开始包含科学计量学期刊的信息(OC-782K),以及(ii)从Aminer(Aminer-534K)提供的著名基准和提供的基准中提取的kg。结果表明,我们所提出的体系结构在F1分数方面优于8-14%的基准,并在诸如Aminer之类的具有挑战性的基准上显示竞争性能。代码和数据集可通过GitHub公开获得:https://github.com/sntcristian/and-kge和Zenodo:https://doi.org/10.5281/zenodo.6309855。

Scholarly data is growing continuously containing information about the articles from a plethora of venues including conferences, journals, etc. Many initiatives have been taken to make scholarly data available as Knowledge Graphs (KGs). These efforts to standardize these data and make them accessible have also led to many challenges such as exploration of scholarly articles, ambiguous authors, etc. This study more specifically targets the problem of Author Name Disambiguation (AND) on Scholarly KGs and presents a novel framework, Literally Author Name Disambiguation (LAND), which utilizes Knowledge Graph Embeddings (KGEs) using multimodal literal information generated from these KGs. This framework is based on three components: 1) Multimodal KGEs, 2) A blocking procedure, and finally, 3) Hierarchical Agglomerative Clustering. Extensive experiments have been conducted on two newly created KGs: (i) KG containing information from Scientometrics Journal from 1978 onwards (OC-782K), and (ii) a KG extracted from a well-known benchmark for AND provided by AMiner (AMiner-534K). The results show that our proposed architecture outperforms our baselines of 8-14% in terms of the F1 score and shows competitive performances on a challenging benchmark such as AMiner. The code and the datasets are publicly available through Github: https://github.com/sntcristian/and-kge and Zenodo:https://doi.org/10.5281/zenodo.6309855 respectively.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源