论文标题

关键O(n)CFT:方法和保形数据

The critical O(N) CFT: Methods and conformal data

论文作者

Henriksson, Johan

论文摘要

时空尺寸的关键$ o(n)$ cft $ 2 <d <4 $是共形场理论的最重要例子之一,伊辛·cft(Ising CFT)为$ n = 1 $,$ 2 \ leq d <4 $,是一个著名的特殊情况。除了众多的物理应用外,它经常用作基于共形对称性的新方法和技术的具体测试地面。在扰动限制中 - $ 4- \ varepsilon $扩展,大型$ n $扩展和$ 2+\tildeε$扩展 - 多年来已经计算了许多共形数据。在本报告中,我们概述了关键的$ o(n)$ CFT,包括一些研究它的方法,并提供了大量的保形数据。从文献中提取的数据,并通过辅助数据文件提供了许多其他计算$ \ varepsilon $异常维度的计算。

The critical $O(N)$ CFT in spacetime dimensions $2 < d < 4$ is one of the most important examples of a conformal field theory, with the Ising CFT at $N=1$, $2 \leq d < 4$, as a notable special case. Apart from numerous physical applications, it serves frequently as a concrete testing ground for new approaches and techniques based on conformal symmetry. In the perturbative limits - the $4-\varepsilon$ expansion, the large $N$ expansion and the $2+\tildeε$ expansion - a lot of conformal data have been computed over the years. In this report, we give an overview of the critical $O(N)$ CFT, including some methods to study it, and present a large collection of conformal data. The data, extracted from the literature and supplemented by many additional computations of order $\varepsilon$ anomalous dimensions, are made available through an ancillary data file.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源