论文标题

对项目建议的双重优先分发学习

Dual Preference Distribution Learning for Item Recommendation

论文作者

Dong, Xue, Song, Xuemeng, Zheng, Na, Wei, Yinwei, Zhao, Zhongzhou

论文摘要

推荐系统可以自动向用户推荐使用他们可能喜欢的项目。他们的目的是通过有效代表用户和项目来对用户项目交互进行建模。现有方法主要通过矢量嵌入来学习用户的偏好和项目的功能,并通过它们的交互对用户对项目的一般偏好进行了建模。实际上,用户对项目属性有特定的偏好,并且通常相关的不同偏好。因此,探索细粒度的偏好以及对用户不同偏好之间的关系进行建模可以提高建议性能。为此,我们提出了一个双重偏好分配学习框架(duple),该框架旨在共同学习给定用户的一般偏好分布和特定的首选项分布,其中前者对应于用户对项目的一般偏好,而后者则是指用户对项目属性的特定偏好。值得注意的是,每个高斯分布的平均向量可以捕获用户的喜好,协方差矩阵可以学习其关系。此外,我们可以为每个用户总结一个首选的属性配置文件,描绘其首选的项目属性。然后,我们可以通过检查其属性与用户首选属性配置文件之间的重叠来提供每个推荐项目的说明。在六个公共数据集上进行的广泛定量和定性实验证明了Duple方法的有效性和解释性。

Recommender systems can automatically recommend users with items that they probably like. The goal of them is to model the user-item interaction by effectively representing the users and items. Existing methods have primarily learned the user's preferences and item's features with vectorized embeddings, and modeled the user's general preferences to items by the interaction of them. In fact, users have their specific preferences to item attributes and different preferences are usually related. Therefore, exploring the fine-grained preferences as well as modeling the relationships among user's different preferences could improve the recommendation performance. Toward this end, we propose a dual preference distribution learning framework (DUPLE), which aims to jointly learn a general preference distribution and a specific preference distribution for a given user, where the former corresponds to the user's general preference to items and the latter refers to the user's specific preference to item attributes. Notably, the mean vector of each Gaussian distribution can capture the user's preferences, and the covariance matrix can learn their relationship. Moreover, we can summarize a preferred attribute profile for each user, depicting his/her preferred item attributes. We then can provide the explanation for each recommended item by checking the overlap between its attributes and the user's preferred attribute profile. Extensive quantitative and qualitative experiments on six public datasets demonstrate the effectiveness and explainability of the DUPLE method.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源