论文标题
根本树上的概率分布
Probability Distribution on Rooted Trees
论文作者
论文摘要
根树的层次和递归表达能力适用于在各个领域(例如数据压缩,图像处理和机器学习)中表示统计模型。另一方面,这种分层表达能力会导致树选择中的问题以避免过度拟合。解决此问题的一种统一方法是一种贝叶斯方法,在该方法上,根树被视为随机变量,可以在所选模型上假定直接损耗函数或新数据点的预测值。但是,据我们所知,对这种方法的所有先前研究都是基于完整树上的概率分布。在本文中,我们提出了任何根生树的广义概率分布,其中只有最大的子节点数量和最大深度是固定的。此外,我们得出了递归方法来评估概率分布的特征而无需任何近似值。
The hierarchical and recursive expressive capability of rooted trees is applicable to represent statistical models in various areas, such as data compression, image processing, and machine learning. On the other hand, such hierarchical expressive capability causes a problem in tree selection to avoid overfitting. One unified approach to solve this is a Bayesian approach, on which the rooted tree is regarded as a random variable and a direct loss function can be assumed on the selected model or the predicted value for a new data point. However, all the previous studies on this approach are based on the probability distribution on full trees, to the best of our knowledge. In this paper, we propose a generalized probability distribution for any rooted trees in which only the maximum number of child nodes and the maximum depth are fixed. Furthermore, we derive recursive methods to evaluate the characteristics of the probability distribution without any approximations.