论文标题

同时进行多模式翻译的视觉关注

Supervised Visual Attention for Simultaneous Multimodal Machine Translation

论文作者

Haralampieva, Veneta, Caglayan, Ozan, Specia, Lucia

论文摘要

最近,多模式机器翻译(MMT)的研究激增,其中其他模式(例如图像)用于提高文本系统的翻译质量。这种多模式系统的特殊用途是同时机器翻译的任务,在该任务中,已证明视觉上下文可以补充源句子提供的部分信息,尤其是在翻译的早期阶段。在本文中,我们提出了第一个基于变压器的同时MMT体系结构,该体系结构以前尚未在现场探索过。此外,我们使用辅助监督信号扩展了该模型,该信号使用标记的短语区域比对来指导其视觉注意机制。我们在三个语言方向上进行全面的实验,并使用自动指标和手动检查进行彻底的定量和定性分析。我们的结果表明,(i)监督视觉注意力一致地提高了MMT模型的翻译质量,并且(ii)通过监督损失对MMT进行微调,比从SCRATCH训练MMT可以提高性能。与最先进的模型相比,我们提出的模型可实现多达2.3 bleu和3.5 Meteor点的改善。

Recently, there has been a surge in research in multimodal machine translation (MMT), where additional modalities such as images are used to improve translation quality of textual systems. A particular use for such multimodal systems is the task of simultaneous machine translation, where visual context has been shown to complement the partial information provided by the source sentence, especially in the early phases of translation. In this paper, we propose the first Transformer-based simultaneous MMT architecture, which has not been previously explored in the field. Additionally, we extend this model with an auxiliary supervision signal that guides its visual attention mechanism using labelled phrase-region alignments. We perform comprehensive experiments on three language directions and conduct thorough quantitative and qualitative analyses using both automatic metrics and manual inspection. Our results show that (i) supervised visual attention consistently improves the translation quality of the MMT models, and (ii) fine-tuning the MMT with supervision loss enabled leads to better performance than training the MMT from scratch. Compared to the state-of-the-art, our proposed model achieves improvements of up to 2.3 BLEU and 3.5 METEOR points.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源