论文标题
紧凑型自旋歧管上狄拉克·拉普拉斯方程的非平凡溶液
Nontrivial Solutions of Dirac-Laplace Equation on Compact Spin Manifolds
论文作者
论文摘要
我们将喷泉定理应用于紧凑型自旋歧管上的一类非线性狄拉克 - 拉普拉斯方程。我们显示标准的Ambrosetti-Rabinowitz条件可以被更自然的超季节条件所取代,该条件足以在某些条件下获得陶瓷条件。在本说明中获得了非线性狄拉克 - 拉普拉斯方程的多种溶液。
We apply the Fountain theorem to a class of nonlinear Dirac-Laplace equation on compact spin manifold. We show the standard Ambrosetti-Rabinowitz condition can be replaced by a more natural super-quadratic condition that is enough to obtain the Cerami condition under certain conditions. Multiple solutions of nonlinear Dirac-Laplace equation are obtained in this note.