论文标题
轴对称,阴影原月球磁盘的全局两层辐射转移模型
A global two-layer radiative transfer model for axisymmetric, shadowed protoplanetary disks
论文作者
论文摘要
了解原行星磁盘的热结构对于建模行星形成和解释磁盘观测至关重要。我们提出了一种新的两层辐射转移模型,用于计算轴对称辐照盘的热结构。与标准的两层模型不同,我们的模型解释了在磁盘表面重新加工星光的径向和垂直传递。因此,该模型使我们能够计算下方的温度“阴影”表面,没有接收直接星光。得益于假定的轴对称,重新处理的星光通量以一维积分形式给出,可以以低成本计算。此外,我们的模型使用时间依赖的能量方程来演变中平面温度,因此可以治疗热不稳定性。我们将我们的全局两层模型应用于具有行星诱导的差距的磁盘,并确认该模型从更昂贵的蒙特卡洛辐射转移计算中获得了磁盘的温度曲线,其准确度小于20%。我们还应用模型来研究辐照磁盘中热波不稳定性的长期行为。全局两层模型在简单且计算上有效,适合研究磁盘的热演化与尘埃演化之间的相互作用。
Understanding the thermal structure of protoplanetary disks is crucial for modeling planet formation and interpreting disk observations. We present a new two-layer radiative transfer model for computing the thermal structure of axisymmetric irradiated disks. Unlike the standard two-layer model, our model accounts for the radial as well as vertical transfer of the starlight reprocessed at the disk surface. The model thus allows us to compute the temperature below "shadowed" surfaces receiving no direct starlight. Thanks to the assumed axisymmetry, the reprocessed starlight flux is given in one-dimensional integral form that can be computed at a low cost. Furthermore, our model evolves the midplane temperature using a time-dependent energy equation and can therefore treat thermal instabilities. We apply our global two-layer model to disks with a planetary induced gap and confirm that the model reproduces the disks' temperature profiles obtained from more computationally expensive Monte Carlo radiative transfer calculations to an accuracy of less than 20%. We also apply the model to study the long-term behavior of the thermal wave instability in irradiated disks. Being simple and computationally efficient, the global two-layer model will be suitable for studying the interplay between disks' thermal evolution and dust evolution.