论文标题

径向对称性的分数超级和亚谐波函数的紧凑型嵌入

Compact embeddings for fractional super and sub harmonic functions with radial symmetry

论文作者

Bellazzini, Jacopo, Georgiev, Vladimir

论文摘要

我们证明了嵌入在Sobolev空间中的紧凑性,用于具有径向对称性的分数超级和亚谐波函数。主要工具是属于有限同质Sobolev Norm定义的函数空间的径向对称函数的重点衰减,以及Riesz电位的有限$ l^2 $ NORM。作为副产品,我们也证明了sobolev空间中插值不平等的最大化剂,用于径向对称的分数超级和亚谐波函数。

We prove compactness of the embeddings in Sobolev spaces for fractional super and sub harmonic functions with radial symmetry. The main tool is a pointwise decay for radially symmetric functions belonging to a function space defined by finite homogeneous Sobolev norm together with finite $L^2$ norm of the Riesz potentials. As a byproduct we prove also existence of maximizers for the interpolation inequalities in Sobolev spaces for radially symmetric fractional super and sub harmonic functions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源