论文标题

通过分层分解深入解释CNN

Deeply Explain CNN via Hierarchical Decomposition

论文作者

Cheng, Ming-Ming, Jiang, Peng-Tao, Han, Ling-Hao, Wang, Liang, Torr, Philip

论文摘要

在计算机视觉中,一些用于解释CNN的归因方法试图研究中级特征如何影响网络预测。但是,他们通常会忽略中间功能之间的特征层次结构。本文介绍了一个层次分解框架,以自上而下的方式解释CNN的决策过程。具体而言,我们提出了一个基于梯度的激活传播(GAP)模块,该模块可以将任何中级CNN的决策分解为其下层并找到支撑功能。然后,我们利用GAP模块将网络决策分解为来自不同CNN层的支持证据。所提出的框架可以为网络决策提供密切相关的支持证据的深层层次结构,这提供了对决策过程的见识。此外,GAP无需努力理解基于CNN的模型而没有网络体系结构修改和额外的培训过程。实验显示了所提出的方法的有效性。代码和交互式演示网站将公开可用。

In computer vision, some attribution methods for explaining CNNs attempt to study how the intermediate features affect the network prediction. However, they usually ignore the feature hierarchies among the intermediate features. This paper introduces a hierarchical decomposition framework to explain CNN's decision-making process in a top-down manner. Specifically, we propose a gradient-based activation propagation (gAP) module that can decompose any intermediate CNN decision to its lower layers and find the supporting features. Then we utilize the gAP module to iteratively decompose the network decision to the supporting evidence from different CNN layers. The proposed framework can generate a deep hierarchy of strongly associated supporting evidence for the network decision, which provides insight into the decision-making process. Moreover, gAP is effort-free for understanding CNN-based models without network architecture modification and extra training process. Experiments show the effectiveness of the proposed method. The code and interactive demo website will be made publicly available.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源