论文标题
高维模型辅助推断对治疗效果的推断具有多价值处理
High-dimensional model-assisted inference for treatment effects with multi-valued treatments
论文作者
论文摘要
考虑使用增强的反概率加权(IPW)估计量的多价处理方法来考虑平均治疗效果,具体取决于结果回归和高维环境中的倾向得分模型。这些回归模型通常是通过基于正则可能性的估计来拟合的,同时忽略了如何在对处理参数的随后推断中使用拟合功能。这种单独的估计可以与现有方法中的已知困难有关。我们为拟合倾向评分和结果回归模型开发了正规化的校准估计,其中采用稀疏性(包括罚款)来促进可变选择,但仔细选择了损失函数,以便在可能的模型错误指定下可以获得有效的置信区间。与二元处理不同,通常的增强IPW估计器可以通过允许不同的系数估计器副本进行结果回归来确保识别。为了估计倾向得分,新的损失函数和估计功能直接与实现加权治疗组之间的协变量平衡有关。我们开发了实用的数值算法,用于通过创新利用Fisher评分来计算使用集体套索的正则校准估计量,并在适当的稀疏条件下提供严格的高维IPW估计器,同时在先前的分析中无法解决技术问题,同时解决技术问题。我们提出了模拟研究和经验应用,以估计孕产妇吸烟对出生体重的影响。提出的方法在R软件包MRCAL中实现。
Consider estimation of average treatment effects with multi-valued treatments using augmented inverse probability weighted (IPW) estimators, depending on outcome regression and propensity score models in high-dimensional settings. These regression models are often fitted by regularized likelihood-based estimation, while ignoring how the fitted functions are used in the subsequent inference about the treatment parameters. Such separate estimation can be associated with known difficulties in existing methods. We develop regularized calibrated estimation for fitting propensity score and outcome regression models, where sparsity-including penalties are employed to facilitate variable selection but the loss functions are carefully chosen such that valid confidence intervals can be obtained under possible model misspecification. Unlike in the case of binary treatments, the usual augmented IPW estimator is generalized by allowing different copies of coefficient estimators in outcome regression to ensure just-identification. For propensity score estimation, the new loss function and estimating functions are directly tied to achieving covariate balance between weighted treatment groups. We develop practical numerical algorithms for computing the regularized calibrated estimators with group Lasso by innovatively exploiting Fisher scoring, and provide rigorous high-dimensional analysis for the resulting augmented IPW estimators under suitable sparsity conditions, while tackling technical issues absent or overlooked in previous analyses. We present simulation studies and an empirical application to estimate the effects of maternal smoking on birth weights. The proposed methods are implemented in the R package mRCAL.