论文标题
晶格QCD的茶和kaon分布振幅
Pion and Kaon Distribution Amplitudes from Lattice QCD
论文作者
论文摘要
我们使用大型摩尔植物有效理论介绍了TION和KAON轻锥分布振幅(DAS)的最新晶格QCD计算。计算是在三个晶格间距$ a \ a \ of {0.06,0.09,0.12 \} $ fm和物理派和kaon masses的情况下完成的,带有Meson Momenta $ P_Z = \ {1.29,1.72,72,2.2.15 \} $ GEV。结果是在最近提出的具有自重新归一化的杂种方案中非扰动重新归一化的,并推断到连续体以及无限动量极限。我们发现锥形和Kaon Das与渐近形式有很大的偏差,以及在Kaon DA中的大$ SU(3)$ the taking效果。
We present the state-of-the-art lattice QCD calculation of the pion and kaon light-cone distribution amplitudes (DAs) using large-momentum effective theory. The calculation is done at three lattice spacings $a\approx\{0.06,0.09,0.12\}$ fm and physical pion and kaon masses, with the meson momenta $P_z = \{1.29,1.72,2.15\}$ GeV. The result is non-perturbatively renormalized in a recently proposed hybrid scheme with self renormalization, and extrapolated to the continuum as well as the infinite momentum limit. We find a significant deviation of the pion and kaon DAs from the asymptotic form, and a large $SU(3)$ flavor breaking effect in the kaon DA.