论文标题

整体操作员的紧凑性和测量空间上的统一集成性

Compactness of integral operators and uniform integrability on measure spaces

论文作者

Hansen, Wolfhard

论文摘要

令$(E,\ Mathcal E,μ)$为度量空间,$ g \ colon e \ times e \ to [0,\ infty] $是可测量的。此外,让$ \ MATHCAL f \!_ {ui} $表示所有$ q \ in \ Mathcal e^+$($ e $上的可衡量的数值函数$ q \ ge 0 $)的集合,以便$ \ {g(x,x,\ cdot)q \ colon x \ in E \ in e $ \ c. f \!_ {co} $表示所有$ q \ in \ Mathcal e^+$的集合,使得映射$ f \ mapsto g(fq):= \ int g(\ cdot,y)f(y)q(y)q(y)q(y)\,d -μ(y)\,d -(y)$ compactor compactor compactor compations $ c $ \ nituct $ e \ n y mathcal e y $ e y $ e y $ e y $ e _ $ e__ b $ e__ b $ e__ b $ e__ b $( sup-norm)。 显示出$ \ Mathcal f \!_ {ui} = \ Mathcal f \!_ {Co} $提供了$ \ Mathcal f \!_ {ui} $和$ \ Mathcal f \!_ {CO} $都具有严格的正函数。

Let $(E,\mathcal E,μ)$ be a measure space and $G\colon E\times E\to [0,\infty]$ be measurable. Moreover, let $\mathcal F\!_{ui}$ denote the set of all $q\in\mathcal E^+$ (measurable numerical functions $q\ge 0$ on $E$) such that $\{G(x,\cdot)q\colon x\in E\}$ is uniformly integrable, and let $\mathcal F\!_{co}$ denote the set of all $q\in\mathcal E^+$ such that the mapping $f\mapsto G(fq) :=\int G(\cdot,y) f(y) q(y)\,dμ(y)$ is a compact operator on the space $\mathcal E_b$ of bounded measurable functions on $E$ (equipped with the sup-norm). It is shown that $\mathcal F\!_{ui}=\mathcal F\!_{co} $ provided both $\mathcal F\!_{ui}$ and $\mathcal F\!_{co} $contain strictly positive functions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源