论文标题

关于非平滑度半无限间隔值矢量优化问题的近似准帕累托溶液

On approximate quasi Pareto solutions in nonsmooth semi-infinite interval-valued vector optimization problems

论文作者

Hung, Nguyen Huy, Tuan, Hoang Ngoc, Van Tuyen, Nguyen

论文摘要

本文介绍了具有多个间隔值的目标函数的非平滑半无限编程的近似解决方案。我们首先通过考虑较低的间隔订单关系来引入四种类型的近似值帕累托解决方案,然后应用一些高级分析和广义分化的高级工具来为这些近似解决方案建立必要的最佳条件。还通过引入近似(严格的)伪Quasi Quassi广义凸功能的概念,以局部Lipschitz函数的限制细分划分的概念,提供了足够的条件,以实现此类问题的近似准帕累托溶液。最后,制定了近似形式的Mond - Weir类型双重模型,并提出了弱,强和匡威的双重关系。

This paper deals with approximate solutions of a nonsmooth semi-infinite programming with multiple interval-valued objective functions. We first introduce four types of approximate quasi Pareto solutions of the considered problem by considering the lower-upper interval order relation and then apply some advanced tools of variational analysis and generalized differentiation to establish necessary optimality conditions for these approximate solutions. Sufficient conditions for approximate quasi Pareto solutions of such a problem are also provided by means of introducing the concepts of approximate (strictly) pseudo-quasi generalized convex functions defined in terms of the limiting subdifferential of locally Lipschitz functions. Finally, a Mond--Weir type dual model in approximate form is formulated, and weak, strong and converse-like duality relations are proposed.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源