论文标题
猎鹰:使用离线和在线学习的快速准确的多径调度
FALCON: Fast and Accurate Multipath Scheduling using Offline and Online Learning
论文作者
论文摘要
多路径传输协议可以同时使用不同的网络路径,从而使快速可靠的数据传输受益。多路径传输协议的调度程序确定如何通过不同的路径分配数据包。现有的多路径调度程序要么符合预定义的政策,要么符合在线培训的政策。在第五代(5G)网络和无线局部网络(WLAN)中采用毫米波(MMWAVE)路径引入了随时间变化的网络条件,在该条件下,现有调度程序在该条件下努力实现快速,准确的适应性。在本文中,我们提出了一种基于学习的多路径调度程序Falcon,可以快速,准确地适应时间变化的网络条件。 Falcon建立在元学习的想法的基础上,其中使用离线学习来创建一组代表粗粒网络条件的元模型,并且在线学习用于引导特定模型,以推导当前的细粒网络条件,以推导安排策略来处理此类条件。使用痕量驱动的仿真实验,我们证明猎鹰的表现分别在静态和移动网络中分别优于最佳最先进的调度程序,高达19.3%和23.6%。此外,我们显示Falcon非常灵活地使用不同类型的应用程序,例如散装转移和Web服务。此外,我们观察到猎鹰的适应时间比所有其他基于学习的调度程序的速度要快得多,与最好的计划相比,速度差不多8倍。最后,我们在现实世界中验证了仿真结果,说明Falcon很好地适应了真实网络的动态性,并始终优于所有其他调度程序。
Multipath transport protocols enable the concurrent use of different network paths, benefiting a fast and reliable data transmission. The scheduler of a multipath transport protocol determines how to distribute data packets over different paths. Existing multipath schedulers either conform to predefined policies or to online trained policies. The adoption of millimeter wave (mmWave) paths in 5th Generation (5G) networks and Wireless Local Area Networks (WLANs) introduces time-varying network conditions, under which the existing schedulers struggle to achieve fast and accurate adaptation. In this paper, we propose FALCON, a learning-based multipath scheduler that can adapt fast and accurately to time-varying network conditions. FALCON builds on the idea of meta-learning where offline learning is used to create a set of meta-models that represent coarse-grained network conditions, and online learning is used to bootstrap a specific model for the current fine-grained network conditions towards deriving the scheduling policy to deal with such conditions. Using trace-driven emulation experiments, we demonstrate FALCON outperforms the best state-of-the-art scheduler by up to 19.3% and 23.6% in static and mobile networks, respectively. Furthermore, we show FALCON is quite flexible to work with different types of applications such as bulk transfer and web services. Moreover, we observe FALCON has a much faster adaptation time compared to all the other learning-based schedulers, reaching almost an 8-fold speedup compared to the best of them. Finally, we have validated the emulation results in real-world settings illustrating that FALCON adapts well to the dynamicity of real networks, consistently outperforming all other schedulers.