论文标题

使用新颖的“ Bluction”工具在货架上的机械搜索

Mechanical Search on Shelves using a Novel "Bluction" Tool

论文作者

Huang, Huang, Danielczuk, Michael, Kim, Chung Min, Fu, Letian, Tam, Zachary, Ichnowski, Jeffrey, Angelova, Anelia, Ichter, Brian, Goldberg, Ken

论文摘要

由于其存储效率,货架在房屋,仓库和商业环境中很常见。但是,这种效率是以降低可见性和可访问性为代价的。从架子的侧面(横向)视图时,大多数对象将被完全遮住,从而导致横向访问机械搜索问题受到约束。为了解决这个问题,我们介绍:(1)一种新型的混合工具,结合了薄的推刀和吸入杯抓手,(2)改进的Lax-ray模拟管道和感知模型,将射线铸造与2D Minkowski和2D Minkowski和有效地生成目标搜索策略有效的目标搜索策略,将射线铸造与2D Minkowski和有效地生成目标搜索的策略,该策略有效地分配了对象,该工具是对对象的分配。来自2000年模拟的货架试验和18次带有Blauction工具的物理提取机器人的实验数据表明,使用吸气抓握动作可将成功率提高了成功率,而在仿真中,在仿真中,在最高绩效的纯种策略中,在物理环境中,成功率提高了26%。

Shelves are common in homes, warehouses, and commercial settings due to their storage efficiency. However, this efficiency comes at the cost of reduced visibility and accessibility. When looking from a side (lateral) view of a shelf, most objects will be fully occluded, resulting in a constrained lateral-access mechanical search problem. To address this problem, we introduce: (1) a novel bluction tool, which combines a thin pushing blade and suction cup gripper, (2) an improved LAX-RAY simulation pipeline and perception model that combines ray-casting with 2D Minkowski sums to efficiently generate target occupancy distributions, and (3) a novel SLAX-RAY search policy, which optimally reduces target object distribution support area using the bluction tool. Experimental data from 2000 simulated shelf trials and 18 trials with a physical Fetch robot equipped with the bluction tool suggest that using suction grasping actions improves the success rate over the highest performing push-only policy by 26% in simulation and 67% in physical environments.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源