论文标题

几乎没有相似性功能增强功能的对象计数

Few-shot Object Counting with Similarity-Aware Feature Enhancement

论文作者

You, Zhiyuan, Yang, Kai, Luo, Wenhan, Lu, Xin, Cui, Lei, Le, Xinyi

论文摘要

这项工作研究了很少的对象计数的问题,该问题计算了查询图像中出现的示例对象的数量(即由一个或几个支持图像描述)。主要的挑战在于,目标对象可以密集地包装在查询图像中,从而使每个单一对象都很难识别。为了解决障碍,我们提出了一个新颖的学习块,配备了相似性比较模块和功能增强模块。具体而言,在给定支持图像和查询图像的情况下,我们首先通过比较每个空间位置的投影特征来得出分数图。有关所有支持图像的得分图将共收集在一起,并在示例维度和空间维度上进行标准化,从而产生可靠的相似性图。然后,我们通过使用开发的点相似性作为加权系数来增强使用支持功能的查询功能。这样的设计鼓励模型通过更多地关注类似于支持图像的区域来检查查询图像,从而导致不同对象之间的界限更加清晰。在各种基准和培训设置上进行了广泛的实验表明,我们通过足够大的边缘超过了最先进的方法。例如,在最近的大型FSC-147数据集中,我们通过将平均绝对误差从22.08提高到14.32(35%$ \ uparrow $),从而超过了最新方法。代码已在https://github.com/zhiyuanyou/safecount中发布。

This work studies the problem of few-shot object counting, which counts the number of exemplar objects (i.e., described by one or several support images) occurring in the query image. The major challenge lies in that the target objects can be densely packed in the query image, making it hard to recognize every single one. To tackle the obstacle, we propose a novel learning block, equipped with a similarity comparison module and a feature enhancement module. Concretely, given a support image and a query image, we first derive a score map by comparing their projected features at every spatial position. The score maps regarding all support images are collected together and normalized across both the exemplar dimension and the spatial dimensions, producing a reliable similarity map. We then enhance the query feature with the support features by employing the developed point-wise similarities as the weighting coefficients. Such a design encourages the model to inspect the query image by focusing more on the regions akin to the support images, leading to much clearer boundaries between different objects. Extensive experiments on various benchmarks and training setups suggest that we surpass the state-of-the-art methods by a sufficiently large margin. For instance, on a recent large-scale FSC-147 dataset, we surpass the state-of-the-art method by improving the mean absolute error from 22.08 to 14.32 (35%$\uparrow$). Code has been released in https://github.com/zhiyuanyou/SAFECount.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源