论文标题
通过混合散射网络克服图形卷积网络中的过度平滑度
Overcoming Oversmoothness in Graph Convolutional Networks via Hybrid Scattering Networks
论文作者
论文摘要
几何深度学习取得了长足的进步,旨在将结构感知神经网络的设计从传统领域到非欧国人的设计,从而引起图形神经网络(GNN),这些神经网络(GNN)可应用于形成的图形结构数据,例如社交网络,生物化学和材料科学。尤其是受欧几里得对应物的启发,尤其是图形卷积网络(GCN)通过提取结构感知功能来成功处理图形数据。但是,当前的GNN模型通常受到各种现象的限制,这些现象限制了其表达能力和推广到更复杂的图形数据集的能力。大多数模型基本上依赖于通过本地平均操作对图形信号的低通滤波,从而导致过度厚度。此外,为了避免严重的过度厚度,大多数流行的GCN风格网络往往是较浅的,并且具有狭窄的接收场,从而导致不足。在这里,我们提出了一个混合GNN框架,该框架将传统的GCN过滤器与通过几何散射定义的带通滤波器相结合。我们进一步介绍了一个注意框架,该框架允许该模型在节点级别的不同过滤器的合并信息本地参与。我们的理论结果确定了散射过滤器的互补益处,以利用图表中的结构信息,而我们的实验显示了我们方法对各种学习任务的好处。
Geometric deep learning has made great strides towards generalizing the design of structure-aware neural networks from traditional domains to non-Euclidean ones, giving rise to graph neural networks (GNN) that can be applied to graph-structured data arising in, e.g., social networks, biochemistry, and material science. Graph convolutional networks (GCNs) in particular, inspired by their Euclidean counterparts, have been successful in processing graph data by extracting structure-aware features. However, current GNN models are often constrained by various phenomena that limit their expressive power and ability to generalize to more complex graph datasets. Most models essentially rely on low-pass filtering of graph signals via local averaging operations, leading to oversmoothing. Moreover, to avoid severe oversmoothing, most popular GCN-style networks tend to be shallow, with narrow receptive fields, leading to underreaching. Here, we propose a hybrid GNN framework that combines traditional GCN filters with band-pass filters defined via geometric scattering. We further introduce an attention framework that allows the model to locally attend over combined information from different filters at the node level. Our theoretical results establish the complementary benefits of the scattering filters to leverage structural information from the graph, while our experiments show the benefits of our method on various learning tasks.