论文标题
在3D Quantum顶点模型中对称性断裂和解解的相互作用
Interplay of symmetry breaking and deconfinement in 3D quantum vertex models
论文作者
论文摘要
我们在3+1D中构建了一类无挫败感的量子顶点模型,其基态是经典3D顶点模型配置的加权叠加。我们的结果是针对钻石,立方和BCC晶格的说明,但对于具有均匀配位数的一般3D晶格而言。相应的经典顶点模型具有$ \ mathbb {z} _2 $量规约束,并具有$ \ mathbb {z} _2 $ global Symmetry。我们通过利用精确波函数二元性和有效的场理论来研究这些对称性之间的相互作用。我们找到一个确切的无间隙点,二元性与$ u(1)$量子旋转液体的rokhsar-kivelson(RK)点有关。此时,对称性断裂和反登录顺序参数都表现出远距离顺序。无间隙点是第二个二元性的自偶点点,该点映射$ \ mathbb {z} _2 $ deconcontined和$ \ mathbb {z} _2 $ symmetry-broken-Broken-Broken阶段相互彼此。对于BCC晶格顶点模型,我们发现无间隙点与不寻常的中间阶段接近对称性断裂和反式化并存。
We construct a broad class of frustration-free quantum vertex models in 3+1D whose ground states are weighted superpositions of classical 3D vertex model configurations. Our results are illustrated for diamond, cubic, and BCC lattices, but hold for general 3D lattices with even coordination number. The corresponding classical vertex models have a $\mathbb{Z}_2$ gauge constraint enriched with a $\mathbb{Z}_2$ global symmetry. We study the interplay between these symmetries by exploiting exact wavefunction dualities and effective field theories. We find an exact gapless point which by duality is related to the Rokhsar-Kivelson (RK) point of $U(1)$ quantum spin liquids. At this point, both the symmetry breaking and deconfinement order parameters exhibit long range order. The gapless point is additionally a self-dual point of a second duality that maps the $\mathbb{Z}_2$ deconfined and $\mathbb{Z}_2$ symmetry-broken phases to one another. For the BCC lattice vertex model, we find that gapless point is proximate to an unusual intermediate phase where symmetry breaking and deconfinement coexist.