论文标题
通过融合实验和数值模拟(TH-CENS),在天然岩石洪水期间,NMR信号的量子偶极耦合校正(TH-CENS)
Quantum Dipolar Coupling Thermal Correction for NMR Signal during Natural Rock Flooding by Melding Experimentation and Numerical Simulation (Th-CENS)
论文作者
论文摘要
研究人员已经使用NMR来测量天然岩石多孔介质内部的多相流体饱和度和分布。但是,随着温度的升高,NMR信号振幅会降低。主要原因是横向过度大冲突效应,其中加热增加了离子运动的自由度,通过使两个旋转向两个相反的方向影响旋转行为,形成偶极耦合。我们通过融合实验和数值模拟方法来求解NMR热效应校正。我们将NMR用于白垩纪碳酸盐岩石多相流量研究。我们对沿洪水路径的入口,中心和出口处的四个不同部分进行了时间步长,对原子温度测量。此外,我们在NMR设备径向轴上进行温度测量,代表永久性磁铁温度。我们为数值模拟器构建了一个3D圆柱传热模型,该模拟器模拟NMR上的热效应分布以最佳生成校正模型。模拟器提供的洞察力提高了对天然岩芯塞的热分布的理解,从而产生了更好的热校正模型,以融合了实验和模拟,这是我们称为Th-Cens的方法。
Researchers have used NMR to measure multi-phase fluid saturation and distribution inside porous media of natural rock. However, the NMR signal amplitude suffers reduction with the increase of temperature. The main reason is the Transverse Overhauser Effect, where heating increases the freedom for ionic motion, affecting spinning behavior by having two spins go in two opposite directions to form the Dipolar Coupling. We approach solving NMR thermal effects correction by melding experimentation and numerical simulation method. We use NMR for Cretaceous carbonate rock multi-phase flow research. We conduct time step in-situ temperature measurement for four different sections of the flooding system at the inlet, center, and outlet along the flooding path. In addition, we conduct a temperature measurement at the NMR device radial axis, representing the permanent magnet temperature. We build a 3D cylindrical heat transfer model for the numerical simulator that simulates thermal effect distribution on the NMR for optimally generating the correction model. The insight provided by the simulator improved the understanding of the thermal distribution at the natural rock core plug to produce a better thermal correction model that meld experimentation and simulation, a method we call Th-CENS.