论文标题
使用条件可逆神经网络对HII区域的发射线诊断
Emission-line diagnostics of HII regions using conditional Invertible Neural Networks
论文作者
论文摘要
年轻的大型恒星在星际介质(ISM)的演变中起着重要作用,以及通过向周围环境中注入能量,动量和辐射(出色的反馈),破坏父母云的恒星形成(GMC)中恒星形成的自我调节,从而破坏了父母云,并调节了进一步的恒星形成。我们观察到的恒星反馈的信息是在发射中继承的,但是很难从光度和光谱测量中推断物理特性,因为恒星反馈是一个高度复杂且非线性的过程,因此观察数据高度退化。因此,我们介绍了一种新颖的方法,该方法将条件可转让的神经网络(CINN)与Warpfield-nistion预测指标(Warpfield-EMP)融合在一起,以估算从光谱观察结果中估算恒星形成区域的物理特性。我们提出了一种cinn,可以预测七个物理参数的后验分布(云质量,恒星形成效率,云密度,云年龄,这意味着第一代恒星的年龄,最年轻的群集的年龄,簇的数量,群集的数量和云的进化阶段),从12个光学发射线的亮度以及在训练过程中未使用的网络测试我们的网络。我们的网络是一种功能强大且耗时的工具,可以准确预测每个参数,尽管有时退化级别的簇数估计值。我们验证了网络估计的后期,并确认它们与输入观测值一致。我们还评估了观察不确定性对网络性能的影响。
Young massive stars play an important role in the evolution of the interstellar medium (ISM) and the self-regulation of star formation in giant molecular clouds (GMCs) by injecting energy, momentum, and radiation (stellar feedback) into surrounding environments, disrupting the parental clouds, and regulating further star formation. Information of the stellar feedback inheres in the emission we observe, however inferring the physical properties from photometric and spectroscopic measurements is difficult, because stellar feedback is a highly complex and non-linear process, so that the observational data are highly degenerate. On this account, we introduce a novel method that couples a conditional invertible neural network (cINN) with the WARPFIELD-emission predictor (WARPFIELD-EMP) to estimate the physical properties of star-forming regions from spectral observations. We present a cINN that predicts the posterior distribution of seven physical parameters (cloud mass, star formation efficiency, cloud density, cloud age which means age of the first generation stars, age of the youngest cluster, the number of clusters, and the evolutionary phase of the cloud) from the luminosity of 12 optical emission lines, and test our network with synthetic models that are not used during training. Our network is a powerful and time-efficient tool that can accurately predict each parameter, although degeneracy sometimes remains in the posterior estimates of the number of clusters. We validate the posteriors estimated by the network and confirm that they are consistent with the input observations. We also evaluate the influence of observational uncertainties on the network performance.