论文标题

频率依赖性的Sternheimer线性响应形式主义,用于强耦合光物质系统

Frequency-dependent Sternheimer linear-response formalism for strongly coupled light-matter systems

论文作者

Welakuh, Davis M., Flick, Johannes, Ruggenthaler, Michael, Appel, Heiko, Rubio, Angel

论文摘要

量子光学实验的快速进展,尤其是在空腔量子电动力学和纳米现代的领域,允许通过与量化的场强耦合通过强耦合原子,分子和固体的化学和物理性质。除了这样的实验进步之外,最近开发了Ab-Initio方法,例如量子动力学功能功能理论(QEDFT),该理论能够描述这些第一原理的这些强耦合系统。为了研究相对较大的系统的响应特性,结合了多种光子模式,随着系统尺寸的扩展,AB-Initio方法变得相关。鉴于这种情况,我们将线性响应的恒星方法扩展到Qedft的框架内,以有效地计算强耦合的光晶格系统的激发态性能。使用这种方法,我们捕获了强度强的特征在分子系统的分散和吸收特性中耦合,并强烈耦合到腔模式。我们通过将物质系统耦合到电磁场的连续体来说明Sternheimer方法的效率。我们观察到耦合系统的光谱特征的变化,因为当分子与模式连续体强烈相互作用时,Lorentzian线形状会变成FANO共振。这项工作提供了一种与量化电磁场相互作用的大分子系统的有效激发态性能的替代方法。

The rapid progress in quantum-optical experiments especially in the field of cavity quantum electrodynamics and nanoplasmonics, allows to substantially modify and control chemical and physical properties of atoms, molecules and solids by strongly coupling to the quantized field. Alongside such experimental advances has been the recent development of ab-initio approaches such as quantum electrodynamical density-functional theory (QEDFT) that is capable of describing these strongly coupled systems from first-principles. To investigate response properties of relatively large systems coupled to a wide range of photon modes, ab-initio methods that scale well with system size become relevant. In light of this, we extend the linear-response Sternheimer approach within the framework of QEDFT to efficiently compute excited-state properties of strongly coupled light-matter systems. Using this method, we capture features of strong light-matter coupling both in the dispersion and absorption properties of a molecular system strongly coupled to the modes of a cavity. We exemplify the efficiency of the Sternheimer approach by coupling the matter system to the continuum of an electromagnetic field. We observe changes in the spectral features of the coupled system as Lorentzian line shapes turn into Fano resonances when the molecule interacts strongly with the continuum of modes. This work provides an alternative approach for computing efficiently excited-state properties of large molecular systems interacting with the quantized electromagnetic field.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源