论文标题
文本中的性别偏见:标记的数据集和词典
Gender Bias in Text: Labeled Datasets and Lexicons
论文作者
论文摘要
语言对我们的思想,看法和性别角色的观念有深远的影响。因此,包括性别的语言是促进社会包容性并有助于实现性别平等的关键工具。因此,检测和减轻文本中的性别偏见有助于停止其传播和社会含义。但是,缺乏使用监督和无监督的机器学习(ML)和自然语言处理(NLP)技术来自动检测性别偏见的性别偏见数据集和词典。因此,这项工作的主要贡献是通过收集,注释和增加相关句子来公开提供标记的数据集和详尽的词典,以促进在英语文本中发现性别偏见。为此,我们通过重新构成其结构,添加新的偏见类型并将每个偏差子类型映射到适当的检测方法中,提出了先前提出的分类法的更新版本。已发布的数据集和词典涵盖了多种偏见亚型,包括:通用性,仿制药,明确的性别标记和性别新的神学主义。我们利用单词嵌入模型来进一步增强收集的词典。
Language has a profound impact on our thoughts, perceptions, and conceptions of gender roles. Gender-inclusive language is, therefore, a key tool to promote social inclusion and contribute to achieving gender equality. Consequently, detecting and mitigating gender bias in texts is instrumental in halting its propagation and societal implications. However, there is a lack of gender bias datasets and lexicons for automating the detection of gender bias using supervised and unsupervised machine learning (ML) and natural language processing (NLP) techniques. Therefore, the main contribution of this work is to publicly provide labeled datasets and exhaustive lexicons by collecting, annotating, and augmenting relevant sentences to facilitate the detection of gender bias in English text. Towards this end, we present an updated version of our previously proposed taxonomy by re-formalizing its structure, adding a new bias type, and mapping each bias subtype to an appropriate detection methodology. The released datasets and lexicons span multiple bias subtypes including: Generic He, Generic She, Explicit Marking of Sex, and Gendered Neologisms. We leveraged the use of word embedding models to further augment the collected lexicons.