论文标题
具有旋转VII的恒星模型的网格:在超极性金属度上从0.8到300 m $ _ \ odot $(z = 0.020)
Grids of stellar models with rotation VII: Models from 0.8 to 300 M$_\odot$ at super-solar metallicity (Z = 0.020)
论文作者
论文摘要
我们在超极性金属性(Z = 0.020)上呈现出恒星模型的网格,该网格扩展了日内瓦模型的先前网格,在太阳能和亚光金属度上。选择Z = 0.020的金属性与内银盘的金属性匹配。与太阳能模型相比,金属性的43%(= 0.02/0.014)的适度增加意味着该模型的演变与太阳能模型相似,但质量损失略大。质量损失将超极性型号的最终总质量限制为35 m $ _ \ odot $,即使最初质量大于100 m $ _ \ odot $的恒星。对于旋转恒星(非旋转恒星25 m $ _ \ odot $)的恒星中的质量损失足够强大,以消除整个富含氢的信封。因此,我们的模型预测SNII低于20 m $ _ \ odot $,用于旋转星(25 m $ _ \ odot $用于非旋转恒星),而snib(可能是SNIC)上面。我们计算了同色和合成簇,以将我们的超极性模型与Westerlund 1(WD1)大量群集进行比较。将旋转模型和非旋转模型结合在一起的合成集群在log10(/yr)= 6.7和7.0之间扩散,能够在WD1中观察到的WR,RSG和YSG星的观察到的群体在定性上再现,尤其是在log10(l/l $ _ \ odot $)= 5-5.5。定量一致是不完美的,我们讨论了可能的原因:合成集群参数,二进制相互作用,质量损失及其相关的不确定性。特别是,人力资源开发的巨大部分的质量损失起着关键作用。
We present a grid of stellar models at super-solar metallicity (Z = 0.020) extending the previous grids of Geneva models at solar and sub-solar metallicities. A metallicity of Z = 0.020 was chosen to match that of the inner Galactic disk. A modest increase of 43% (=0.02/0.014) in metallicity compared to solar models means that the models evolve similarly to solar models but with slightly larger mass loss. Mass loss limits the final total masses of the super-solar models to 35 M$_\odot$ even for stars with initial masses much larger than 100 M$_\odot$. Mass loss is strong enough in stars above 20 M$_\odot$ for rotating stars (25 M$_\odot$ for non-rotating stars) to remove the entire hydrogen-rich envelope. Our models thus predict SNII below 20 M$_\odot$ for rotating stars (25 M$_\odot$ for non-rotating stars) and SNIb (possibly SNIc) above that. We computed both isochrones and synthetic clusters to compare our super-solar models to the Westerlund 1 (Wd1) massive young cluster. A synthetic cluster combining rotating and non-rotating models with an age spread between log10 (age/yr) = 6.7 and 7.0 is able to reproduce qualitatively the observed populations of WR, RSG and YSG stars in Wd1, in particular their simultaneous presence at log10(L/L$_\odot$) = 5-5.5. The quantitative agreement is imperfect and we discuss the likely causes: synthetic cluster parameters, binary interactions, mass loss and their related uncertainties. In particular, mass loss in the cool part of the HRD plays a key role.