论文标题
Lorentz-Minkowski Space中的Hessian商类方程的Pogorelov类型估算$ \ Mathbb {r}^{N+1} _ {1}
Pogorelov type estimates for a class of Hessian quotient equations in Lorentz-Minkowski space $\mathbb{R}^{n+1}_{1}$
论文作者
论文摘要
令$ω$为叠加平面上的一个有界域(具有光滑边界)$ \ Mathscr {h}^{n}(1)$,位于$(n+1)$ - dimensional lorentz-lorentz-minkowski Space $ \ Mathbb $ \ Mathbb {r}^r}^r}^n+1} $} $ dimementional and Radius $ 1 $,在$(n+1)$中。在本文中,通过使用先验估计值,我们可以建立$ K $ -CONVEX解决方案的Pogorelov类型估计值,以在$ω\ subset \ subset \ Mathscr {h}^{n}(n}(1)上定义的一类Hessian商方程(1)$以及消失的Dirichlet边界条件。
Let $Ω$ be a bounded domain (with smooth boundary) on the hyperbolic plane $\mathscr{H}^{n}(1)$, of center at origin and radius $1$, in the $(n+1)$-dimensional Lorentz-Minkowski space $\mathbb{R}^{n+1}_{1}$. In this paper, by using a priori estimates, we can establish Pogorelov type estimates of $k$-convex solutions to a class of Hessian quotient equations defined over $Ω\subset\mathscr{H}^{n}(1)$ and with the vanishing Dirichlet boundary condition.