论文标题

Vipriors 2:数据有效深度学习挑战的视觉归纳先验

VIPriors 2: Visual Inductive Priors for Data-Efficient Deep Learning Challenges

论文作者

Lengyel, Attila, Bruintjes, Robert-Jan, Rios, Marcos Baptista, Kayhan, Osman Semih, Zambrano, Davide, Tomen, Nergis, van Gemert, Jan

论文摘要

第二版的“ vipriors:数据效率深度学习的视觉归纳先验”的挑战具有五个受数据障碍的挑战,其中从头开始对模型进行了培训,以减少用于各种关键计算机视觉任务的培训样本数量。为了鼓励将相关的归纳偏见纳入提高深度学习模型的数据效率的新创意,我们禁止使用预训练的检查点和其他转移学习技术。在所有五个挑战中,所提供的基线的表现都优于大幅度,这主要归功于广泛的数据增强策略,模型结构和有效的网络体系结构。

The second edition of the "VIPriors: Visual Inductive Priors for Data-Efficient Deep Learning" challenges featured five data-impaired challenges, where models are trained from scratch on a reduced number of training samples for various key computer vision tasks. To encourage new and creative ideas on incorporating relevant inductive biases to improve the data efficiency of deep learning models, we prohibited the use of pre-trained checkpoints and other transfer learning techniques. The provided baselines are outperformed by a large margin in all five challenges, mainly thanks to extensive data augmentation policies, model ensembling, and data efficient network architectures.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源