论文标题
某些高几何组的算术性
Arithmeticity of Some Hypergeometric Groups
论文作者
论文摘要
我们表明,与参数对关联的超几何组$ \ left(0,0,\ frac {1} {3} {3},\ frac {2} {3} {3} \ right)$, $ \ left(\ frac {1} {2},\ frac {1} {2},\ frac {1} {4} {4},\ frac {3} {4} {4} \ right)$;和$ \ left(0,\ frac {1} {12},\ frac {5} {12},\ frac {7} {12} {12},\ frac {11} {12} {12} \ right), \ left(\ frac {1} {2},\ frac {1} {3},\ frac {1} {3} {3},\ frac {2} {3},\ frac {2} {2} {3} {3} {3} \ right)$是arithmet的。
We show that the hypergeometric groups associated to the pairs of the parameters $\left(0,0,\frac{1}{3}, \frac{2}{3}\right)$, $\left(\frac{1}{2},\frac{1}{2},\frac{1}{4},\frac{3}{4}\right)$; and $\left(0,\frac{1}{12}, \frac{5}{12},\frac{7}{12},\frac{11}{12}\right), \left(\frac{1}{2},\frac{1}{3},\frac{1}{3},\frac{2}{3},\frac{2}{3}\right)$ are arithmetic.