论文标题
深度学习加速3D碳储存储层压力预测基于数据同化,使用Insar的表面位移
Deep Learning-Accelerated 3D Carbon Storage Reservoir Pressure Forecasting Based on Data Assimilation Using Surface Displacement from InSAR
论文作者
论文摘要
通过吸收监测数据来快速预测地质碳储存(GCS)中的储层压力分布是一个具有挑战性的问题。由于钻井成本高,GCS项目通常从井中进行空间稀疏的测量,从而导致储层压力预测的不确定性很高。为了应对这一挑战,我们建议使用低成本的干涉合成范围雷达(INSAR)数据作为监视数据,以推断储层压力增加。我们开发了深度学习加速工作流,以吸收从Insar和预测动态储层压力中解释的表面位移图。 Workflow采用合奏更光滑的多个数据同化(ES-MDA)框架,更新了三维(3D)地质特性,并通过量化的不确定性来预测储层压力。我们使用具有双峰分布的渗透率和孔隙率的合成商业规模的GCS模型来证明工作流程的功效。采用两步CNN-PCA方法来参数化双峰场。工作流的计算效率分别通过两个基于U-NET的剩余替代模型来提高,分别用于表面位移和储层压力预测。工作流可以在个人计算机上半小时内完成数据同化和储层压力预测。
Fast forecasting of reservoir pressure distribution in geologic carbon storage (GCS) by assimilating monitoring data is a challenging problem. Due to high drilling cost, GCS projects usually have spatially sparse measurements from wells, leading to high uncertainties in reservoir pressure prediction. To address this challenge, we propose to use low-cost Interferometric Synthetic-Aperture Radar (InSAR) data as monitoring data to infer reservoir pressure build up. We develop a deep learning-accelerated workflow to assimilate surface displacement maps interpreted from InSAR and to forecast dynamic reservoir pressure. Employing an Ensemble Smoother Multiple Data Assimilation (ES-MDA) framework, the workflow updates three-dimensional (3D) geologic properties and predicts reservoir pressure with quantified uncertainties. We use a synthetic commercial-scale GCS model with bimodally distributed permeability and porosity to demonstrate the efficacy of the workflow. A two-step CNN-PCA approach is employed to parameterize the bimodal fields. The computational efficiency of the workflow is boosted by two residual U-Net based surrogate models for surface displacement and reservoir pressure predictions, respectively. The workflow can complete data assimilation and reservoir pressure forecasting in half an hour on a personal computer.