论文标题

使用扩散算子的Riemannian组成的时空分析

Spatiotemporal Analysis Using Riemannian Composition of Diffusion Operators

论文作者

Shnitzer, Tal, Wu, Hau-Tieng, Talmon, Ronen

论文摘要

近年来,多元时间序列变得丰富,因为许多数据收购系统通过多个传感器同时记录信息。在本文中,我们假设变量与某些几何形状有关,并提出了一种基于操作的时空分析方法。我们的方法结合了通常单独考虑的三个组件:(i)用于构建变量几何形状的构建操作员的多种多样学习,(ii)对称对称的对称的对称的正定定义矩阵的Riemannian几何,用于对应于不同时间样本的操作员的多尺度组成,以及(III)对不同动力学模式的组合操作员的光谱分析。我们提出了一种类似于经典小波分析的方法,我们称这种方法是riemannian多分辨率分析(RMRA)。我们在复合算子的光谱分析上提供了一些理论结果,并证明了有关模拟和实际数据的建议方法。

Multivariate time-series have become abundant in recent years, as many data-acquisition systems record information through multiple sensors simultaneously. In this paper, we assume the variables pertain to some geometry and present an operator-based approach for spatiotemporal analysis. Our approach combines three components that are often considered separately: (i) manifold learning for building operators representing the geometry of the variables, (ii) Riemannian geometry of symmetric positive-definite matrices for multiscale composition of operators corresponding to different time samples, and (iii) spectral analysis of the composite operators for extracting different dynamic modes. We propose a method that is analogous to the classical wavelet analysis, which we term Riemannian multi-resolution analysis (RMRA). We provide some theoretical results on the spectral analysis of the composite operators, and we demonstrate the proposed method on simulations and on real data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源