论文标题
非旋转球形对流的手性模式
Chiral Pattern in Nonrotating Spherical Convection
论文作者
论文摘要
当瑞利数量较低时,具有中央重力的非旋转球形壳中的雷利 - 贝纳德对流具有对称溶液,其对称溶液的三维离散旋转。反射对称性的所有已知模式都具有常规的多面体对称性。我们通过计算机模拟在非旋转球形外壳中发现了一种新型的稳定对流。该模式具有无反射对称性的常规四面体的离散旋转对称性。对流由六对螺旋卷组成,上面放在球形十二面体的12个面上。根据螺旋的绕组,有两种可能的配置是彼此的镜像。
When the Rayleigh number is low, Rayleigh-Bénard convection in a nonrotating spherical shell with central gravity has symmetric solutions in terms of three-dimensional discrete rotation. All the known patterns with the regular polyhedral symmetries accompany reflection symmetry. We found a new type of steady convection in a nonrotating spherical shell by computer simulations. The pattern has the discrete rotational symmetry of a regular tetrahedron with no reflection symmetry. The convection consists of six pairs of spiral rolls placed on 12 faces of a spherical dodecahedron. Depending on the winding of the spirals, there are two possible configurations that are mirror images of one another.