论文标题
分子动力学的临界点粒子数波动
Critical point particle number fluctuations from molecular dynamics
论文作者
论文摘要
我们通过利用经典的Lennard-Jones流体在周期盒中利用分子动力学模拟来研究粒子数的波动。 $ n $体育问题的数值解决方案自然结合了所有相关性,确切的保护定律和有限的尺寸效应,从而使我们能够研究动态设置中临界点的波动特征。我们发现,当在坐标子空间中进行测量时,观察到与临界点相关的大波动,但是在没有集体流动和扩展的情况下,当施加动量削减时,基本上会被洗净。我们将发现的结果置于重型离子碰撞中的事件波动的背景下。
We study fluctuations of particle number in the presence of critical point by utilizing molecular dynamics simulations of the classical Lennard-Jones fluid in a periodic box. The numerical solution of the $N$-body problem naturally incorporates all correlations, exact conservation laws, and finite size effects, allowing us to study the fluctuation signatures of the critical point in a dynamical setup. We find that large fluctuations associated with the critical point are observed when measurements are performed in coordinate subspace, but, in the absence of collective flow and expansion, are essentially washed out when momentum cuts are imposed instead. We put our findings in the context of event-by-event fluctuations in heavy-ion collisions.