论文标题

Robomal:机器人网络系统的恶意软件检测

RoboMal: Malware Detection for Robot Network Systems

论文作者

Kaur, Upinder, Zhou, Haozhe, Shen, Xiaxin, Min, Byung-Cheol, Voyles, Richard M.

论文摘要

机器人系统越来越多地整合到现代生活的众多途径中。从清洁房屋到提供指导和情感支持,机器人现在直接与人类合作。由于其深远的应用程序和逐渐复杂的体系结构,它们的目标是诸如传感器传动器攻击,数据欺骗,恶意软件和网络入侵之类的对抗性攻击。因此,机器人系统的安全已变得至关重要。在本文中,我们解决了机器人软件中恶意软件检测的服务不足的领域。由于机器人通常与人类密切相关,而且经常通过直接互动,因此恶意软件可能会危及生命。因此,我们提出了二进制可执行文件上静态恶意软件检测的Robomal框架,以在有机会执行之前检测到恶意软件。此外,我们通过提供包含小规模自动驾驶汽车的控制器可执行文件的Robomal数据集来解决该空间中数据的急剧匮乏。将框架的性能与广泛使用的监督学习模型进行了比较:GRU,CNN和ANN。值得注意的是,基于LSTM的Robomal模型的表现优于其他模型,精度为85%,精度为10倍的交叉验证,因此证明了所提出的框架的有效性。

Robot systems are increasingly integrating into numerous avenues of modern life. From cleaning houses to providing guidance and emotional support, robots now work directly with humans. Due to their far-reaching applications and progressively complex architecture, they are being targeted by adversarial attacks such as sensor-actuator attacks, data spoofing, malware, and network intrusion. Therefore, security for robotic systems has become crucial. In this paper, we address the underserved area of malware detection in robotic software. Since robots work in close proximity to humans, often with direct interactions, malware could have life-threatening impacts. Hence, we propose the RoboMal framework of static malware detection on binary executables to detect malware before it gets a chance to execute. Additionally, we address the great paucity of data in this space by providing the RoboMal dataset comprising controller executables of a small-scale autonomous car. The performance of the framework is compared against widely used supervised learning models: GRU, CNN, and ANN. Notably, the LSTM-based RoboMal model outperforms the other models with an accuracy of 85% and precision of 87% in 10-fold cross-validation, hence proving the effectiveness of the proposed framework.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源