论文标题

在时间域中全波形反演,以进行时间疑问和色散弹性介质

On the time-domain full waveform inversion for time-dissipative and dispersive poroelastic media

论文作者

Ou, Miao-jung Yvonne, Plecháč, Petr, Xie, Jiangming

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

This paper concerns the Time-Domain Full Waveform Inversion (FWI) for dispersive and dissipative poroelastic materials. The forward problem is an initial boundary value problem (IBVP) of the poroelastic equations with a memory term; the FWI is formulated as a minimization problem of a least-square misfit function with the (IBVP) as the constraint. In this paper, we derive the adjoint problem of this minimization problem, whose solution can be applied to computed the direction of steepest descent in the iterative process for minimization. The adjoint problem has a similar numerical structure as the forward problem and hence can be solved by the same numerical solver. Because the tracking of the energy evolution plays an important role in the FWI for dissipative and dispersive equations, the energy analysis of the forward system is also carried out in this paper.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源