论文标题
爱因斯坦高斯 - 骨网中的各向异性奇怪的星星,带有雀科公表示
Anisotropic strange stars in Einstein Gauss-Bonnet Gravity with Finch-Skea metric
论文作者
论文摘要
我们在爱因斯坦高斯河内(EGB)重力中获得了一类新的各向异性相对论溶液,并在静水平衡中获得了芬奇 - 晶度度量。使用相对论的解决方案用于构建各向异性恒星模型,用于奇异星的各种恒星模型,MIT袋方程$ p_ {r} = \ frac {1} {3} {3} \ left(ρ-4 b_ {g} \ right)$,其中$ b_ {g} $是$ b_ {g} $是bag bag bag constants。考虑到已知的恒星PSR J0348+0432的质量和半径,我们在较高维度的框架中构建了恒星模型。我们还预测了不同模型参数的恒星的质量和半径。高斯河网耦合项($α$)在确定密度,压力,各向异性剖面和其他特征方面起着重要作用。探测恒星模型的稳定性,分析恒星内部的不同能量条件,声速变化和绝热稳定性条件。与爱因斯坦重力($α= 0 $)相比,EGB重力中恒星的中心密度和压力具有更高的值。我们还探讨了额外维度对紧凑对象的物理特征的影响。为此,我们考虑$ d = 5 $和$ d = 6 $以获得现实的恒星模型,并发现在正式情况下,允许$α$的正值和负值。但是在后来的情况下,只有$α<0 $允许在Finch-Skea度量中进行紧凑对象。我们为可接受的恒星模型确定许多观察到的恒星的模型参数的最佳拟合值。
We obtain a class of new anisotropic relativistic solution in Einstein Gauss-Bonnet (EGB) gravity with Finch-Skea metric in hydrostatic equilibrium. The relativistic solutions are employed to construct anisotropic stellar models for strange star with MIT Bag equation of state $ p_{r}= \frac{1}{3} \left( ρ- 4 B_{g}\right)$, where $B_{g}$ is the Bag constants. Considering the mass and radius of a known star PSR J0348+0432 we construct stellar models in the framework of higher dimensions. We also predict the mass and radius of stars for different model parameters. The Gauss-Bonnet coupling term ($α$) plays an important role in determining the density, pressure, anisotropy profiles and other features. The stability of the stellar models are probed analyzing the different energy conditions, variation of sound speed and adiabatic stability conditions inside the star. The central density and pressure of a star in EGB gravity are found to have higher values compared to that one obtains in Einstein gravity ($α=0$). We also explore the effect of extra dimensions for the physical features of a compact object. For this we consider $D=5$ and $D=6$ to obtain a realistic stellar model and found that in the formal case both positive and negative values of $α$ are allowed. But in the later case, only $α<0$ permits compact object in the Finch-Skea metric. We determine the best fit values of the model parameters for a number of observed stars for acceptable stellar models.