论文标题

部分可观测时空混沌系统的无模型预测

Stitch it in Time: GAN-Based Facial Editing of Real Videos

论文作者

Tzaban, Rotem, Mokady, Ron, Gal, Rinon, Bermano, Amit H., Cohen-Or, Daniel

论文摘要

生成对抗网络在其潜在空间中编码丰富语义的能力已被广泛用于面部图像编辑。但是,通过视频复制他们的成功已被证明具有挑战性。缺乏一系列高质量的面部视频,并使用视频介绍了克服时间连贯性的基本障碍。我们建议这种障碍在很大程度上是人造的。源视频在时间上已经是连贯的,并且与该状态的偏差部分是由于对编辑管道中各个组件的粗心处理。我们利用StyleGAN的自然对齐和神经网络的趋势来学习低频功能,并证明它们提供了强烈一致的先验。我们借鉴这些见解,并提出了一个视频中面孔语义编辑的框架,证明了对当前最新技术的显着改善。我们的方法会产生有意义的面部操作,保持更高的时间一致性,并可以应用于具有挑战性的高质量,会说话的头视频,而当前方法与之抗争。

The ability of Generative Adversarial Networks to encode rich semantics within their latent space has been widely adopted for facial image editing. However, replicating their success with videos has proven challenging. Sets of high-quality facial videos are lacking, and working with videos introduces a fundamental barrier to overcome - temporal coherency. We propose that this barrier is largely artificial. The source video is already temporally coherent, and deviations from this state arise in part due to careless treatment of individual components in the editing pipeline. We leverage the natural alignment of StyleGAN and the tendency of neural networks to learn low frequency functions, and demonstrate that they provide a strongly consistent prior. We draw on these insights and propose a framework for semantic editing of faces in videos, demonstrating significant improvements over the current state-of-the-art. Our method produces meaningful face manipulations, maintains a higher degree of temporal consistency, and can be applied to challenging, high quality, talking head videos which current methods struggle with.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源