论文标题

立方至三角形和四方钙钛矿的不同关键行为

Different critical behaviors in cubic to trigonal and tetragonal perovskites

论文作者

Aharony, A., Entin-Wohlman, O., Kudlis, A.

论文摘要

诸如Laalo3(或SRTIO3)之类的钙钛矿经历了从立方晶体到三角形(或四方)结构的置换结构相变。多年来,这两种类型的过渡中的关键指数已安装在各向同性三元组分的海森伯格模型上。然而,现场理论计算表明,重新归一化组的各向同性固定点不稳定,而重新归一化组的迭代流则流到了立方固定点或波动驱动的一阶转变。在这里,我们表明,这两种情况分别对应于三角形到三角形,分别对应于四方过渡。在这两种情况下,临界行为都通过慢慢改变有效的关键指数(表现出普遍特征)来描述。对于三角形情况,我们预测有效指数从其ISIN值到其立方值(与各向同性相关的)的交叉。对于四方情况,有效指数可以在较宽的温度范围内具有各向同性值,然后在通往一阶跃迁的途中表现出很大变化。提出了三个维度的各向同性固定点附近的新的重归其化组计算,并用于估计有效指数,并提出了测试这些预测的专门实验。类似的预测适用于立方磁和铁电系统。

Perovskites like LaAlO3 (or SrTiO3) undergo displacive structural phase transitions from a cubic crystal to a trigonal (or tetragonal) structure. For many years, the critical exponents in both these types of transitions have been fitted to those of the isotropic three-components Heisenberg model. However, field theoretical calculations showed that the isotropic fixed point of the renormalization group is unstable, and renormalization group iterations flow either to a cubic fixed point or to a fluctuation-driven first-order transition. Here we show that these two scenarios correspond to the cubic to trigonal and to the cubic to tetragonal transitions, respectively. In both cases, the critical behavior is described by slowly varying effective critical exponents, which exhibit universal features. For the trigonal case, we predict a crossover of the effective exponents from their Ising values to their cubic values (which are close to the isotropic ones). For the tetragonal case, the effective exponents can have the isotropic values over a wide temperature range, before exhibiting large changes en route to the first-order transition. New renormalization group calculations near the isotropic fixed point in three dimensions are presented and used to estimate the effective exponents, and dedicated experiments to test these predictions are proposed. Similar predictions apply to cubic magnetic and ferroelectric systems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源