论文标题
CP-NET:用于自我监督点云学习的轮廓扰动的重建网络
CP-Net: Contour-Perturbed Reconstruction Network for Self-Supervised Point Cloud Learning
论文作者
论文摘要
尚未完全探索自我监督的学习以进行点云分析。当前的框架主要基于点云重建。只有3D坐标,这种方法倾向于学习局部几何结构和轮廓,同时无法理解高级语义内容。因此,它们在下游任务(例如分类,细分等)中实现了不令人满意的性能。为了填补这一空白,我们提出了一个通用的轮廓扰动的重建网络(CP-NET),可以有效地指导自我审议的重建,以在点云中学习语义内容,从而促进点云代表性的歧视性。首先,我们为点云重建引入了一个简洁的轮廓扰动的增强模块。在几何学的指导下,我们将点云分为轮廓和内容组成部分。随后,我们扰动轮廓组件并保留点云上的内容组件。结果,自我监督者可以通过从这种扰动的驱动器中重建原始点云来有效地关注语义内容。其次,我们将这种扰动的重建作为助理分支,通过明显的双分支一致性损失来指导基本重建分支的学习。在这种情况下,我们的CP-NET不仅捕获结构轮廓,还可以学习用于判别下游任务的语义内容。最后,我们对许多点云基准测试进行了广泛的实验。部分分割结果表明,我们的CP-NET(MIOU的81.5%)优于先前的自我监督模型,并使用完全监督的方法来缩小差距。对于分类,我们通过对ModelNet40(精度为92.5%)和ScanObjectnn(87.9%精度)的完全监督方法获得竞争结果。代码和模型之后将发布。
Self-supervised learning has not been fully explored for point cloud analysis. Current frameworks are mainly based on point cloud reconstruction. Given only 3D coordinates, such approaches tend to learn local geometric structures and contours, while failing in understanding high level semantic content. Consequently, they achieve unsatisfactory performance in downstream tasks such as classification, segmentation, etc. To fill this gap, we propose a generic Contour-Perturbed Reconstruction Network (CP-Net), which can effectively guide self-supervised reconstruction to learn semantic content in the point cloud, and thus promote discriminative power of point cloud representation. First, we introduce a concise contour-perturbed augmentation module for point cloud reconstruction. With guidance of geometry disentangling, we divide point cloud into contour and content components. Subsequently, we perturb the contour components and preserve the content components on the point cloud. As a result, self supervisor can effectively focus on semantic content, by reconstructing the original point cloud from such perturbed one. Second, we use this perturbed reconstruction as an assistant branch, to guide the learning of basic reconstruction branch via a distinct dual-branch consistency loss. In this case, our CP-Net not only captures structural contour but also learn semantic content for discriminative downstream tasks. Finally, we perform extensive experiments on a number of point cloud benchmarks. Part segmentation results demonstrate that our CP-Net (81.5% of mIoU) outperforms the previous self-supervised models, and narrows the gap with the fully-supervised methods. For classification, we get a competitive result with the fully-supervised methods on ModelNet40 (92.5% accuracy) and ScanObjectNN (87.9% accuracy). The codes and models will be released afterwards.