论文标题
共同宇宙$ c^{\ ast} $ - 产品系统的代数,用于有限的groupoid子类别
Co-universal $C^{\ast}$-algebras for product systems over finite aligned subcategories of groupoids
论文作者
论文摘要
在本文中引入和研究了左取消类别的产品系统。我们还介绍了有限的左取消类别及其NICA协变代表的有限左右对齐产品系统的概念。本文证明了与有限的分组类别类别类别相比,与兼容的nica兼容,NICA协方差表示的共同代数的存在。
The product systems over left cancellative small categories are introduced and studied in this paper. We also introduce the notion of compactly aligned product systems over finite aligned left cancellative small categories and its Nica covariant representations. The existence of co-universal algebras for injective, gauge-compatible, Nica covariant representations of compactly aligned product systems over finite aligned subcategories of groupoids is proved in this paper.