论文标题
Baouendi-Grushin操作员和应用
Sharp resolvent estimate for the Baouendi-Grushin operator and applications
论文作者
论文摘要
在本文中,我们研究了二维圆环$ \ mathbb {t}^2 = \ mathbb {r}^2/(2π\ mathbb {z})^2 $ withHölderDamperswithHölderDamperswithHölderDampersin the二维圆环$ \ mathbb {t}^2 = \ mathbb {t}^2 = \ mathbb {t}^2 = \ mathbb {t}^2 = \ mathBb {操作员在$ x = 0 $的情况下沿垂直方向进行下去退化。我们展示了三种不同的情况: (i)阻尼区域验证了相对于非分类汉密尔顿流量和垂直下层次流动的几何控制条件; (ii)未阻尼区域包含水平条; (iii)未阻止的部分是一条线。在所有这些情况下,我们都会获得急剧解决的估计。因此,我们证明了相关阻尼的波动方程的最佳能量衰减速率。对于(i)和(iii),我们的结果与拉普拉斯分辨率形成鲜明对比,因为最佳结合受到下层状状态中的准岛的控制。而对于(ii),最优性受椭圆状态中的准莫丁的约束,最佳能量衰减速率与$ \ mathbb {t}^2 $上的经典阻尼波方程相同。 我们的分析包含了适应性的两种微粒细胞半经典测量,构造准山脉的构建以及精制的Birkhoff正常形式降低相位空间的不同区域。具有独立感兴趣的是,我们还获得了在下层状状态中微钙化的准定位的半经典度量的传播定理。
In this article we study the semiclassical resolvent estimate for the non-selfadjoint Baouendi-Grushin operator on the two-dimensional torus $\mathbb{T}^2=\mathbb{R}^2/(2π\mathbb{Z})^2$ with Hölder dampings. The operator is subelliptic degenerating along the vertical direction at $x=0$. We exhibit three different situations: (i) the damping region verifies the geometric control condition with respect to both the non-degenerate Hamiltonian flow and the vertical subelliptic flow; (ii) the undamped region contains a horizontal strip; (iii) the undamped part is a line. In all of these situations, we obtain sharp resolvent estimates. Consequently, we prove the optimal energy decay rate for the associated damped waved equations. For (i) and (iii), our results are in sharp contrast to the Laplace resolvent since the optimal bound is governed by the quasimodes in the subelliptic regime. While for (ii), the optimality is governed by the quasimodes in the elliptic regime, and the optimal energy decay rate is the same as for the classical damped wave equation on $\mathbb{T}^2$. Our analysis contains the study of adapted two-microlocal semiclassical measures, construction of quasimodes and refined Birkhoff normal-form reductions in different regions of the phase-space. Of independent interest, we also obtain the propagation theorem for semiclassical measures of quasimodes microlocalized in the subelliptic regime.