论文标题
Hdhuman:从稀疏视图中的高质量人类小说视图渲染
HDhuman: High-quality Human Novel-view Rendering from Sparse Views
论文作者
论文摘要
在本文中,我们旨在应对人类表演者的新型视图渲染的挑战,这些表演者使用一组稀疏的摄像头穿着复杂纹理图案的衣服。尽管最近的一些作品在使用稀疏视图的质地上获得了具有相对均匀纹理的人类的出色渲染质量,但在处理复杂的纹理模式时,渲染质量仍然有限,因为它们无法恢复输入视图中观察到的高频几何细节。为此,我们提出了Hdhuman,它使用具有像素对齐的空间变压器的人类重建网络和具有几何形状引导的Pixel-wise功能集成的渲染网络来实现高质量的人类重建和渲染。设计的像素一致的空间变压器计算输入视图之间的相关性,并通过高频细节生成人类重建结果。基于表面重建结果,几何学引导的像素的可见性推理为多视图特征集成提供了指导,从而使渲染网络能够以2K分辨率在2K分辨率上呈现高质量的图像。与以前的神经渲染作品始终需要训练或调整独立网络的不同场景的工作不同,我们的方法是能够推广到新颖主题的一般框架。实验表明,我们的方法在合成数据和实际数据上都优于所有先前的通用或特定方法。
In this paper, we aim to address the challenge of novel view rendering of human performers who wear clothes with complex texture patterns using a sparse set of camera views. Although some recent works have achieved remarkable rendering quality on humans with relatively uniform textures using sparse views, the rendering quality remains limited when dealing with complex texture patterns as they are unable to recover the high-frequency geometry details that are observed in the input views. To this end, we propose HDhuman, which uses a human reconstruction network with a pixel-aligned spatial transformer and a rendering network with geometry-guided pixel-wise feature integration to achieve high-quality human reconstruction and rendering. The designed pixel-aligned spatial transformer calculates the correlations between the input views and generates human reconstruction results with high-frequency details. Based on the surface reconstruction results, the geometry-guided pixel-wise visibility reasoning provides guidance for multi-view feature integration, enabling the rendering network to render high-quality images at 2k resolution on novel views. Unlike previous neural rendering works that always need to train or fine-tune an independent network for a different scene, our method is a general framework that is able to generalize to novel subjects. Experiments show that our approach outperforms all the prior generic or specific methods on both synthetic data and real-world data.