论文标题
GeoFill:基于参考的图像介绍,并具有更好的几何理解
GeoFill: Reference-Based Image Inpainting with Better Geometric Understanding
论文作者
论文摘要
参考指导的图像介绍通过利用另一个单个参考图像的内容来恢复图像像素。主要的挑战是如何将像素从参考图像精确地放入孔区域。因此,了解将像素与两个视图之间相关的3D几何形状是迈向建立更好模型的关键步骤。考虑到处理各种参考图像的复杂性,我们专注于通过自由移动同一相机捕获图像的情况。与以前的工作相比,我们提出了一种原则性的方法,该方法不会对场景的平面性做出启发式假设。我们利用单眼深度估计值,并预测相机之间的相对姿势,然后通过可区分的3D重新注入和相对姿势和深度图量表和偏移的关节优化将参考图像与目标对齐。我们的方法可以在Realestate10k和Mannequinchallenge数据集上实现最新的性能,具有大型基线,复杂的几何形状和极端的相机运动。我们通过实验验证我们的方法在处理大孔方面也更好。
Reference-guided image inpainting restores image pixels by leveraging the content from another single reference image. The primary challenge is how to precisely place the pixels from the reference image into the hole region. Therefore, understanding the 3D geometry that relates pixels between two views is a crucial step towards building a better model. Given the complexity of handling various types of reference images, we focus on the scenario where the images are captured by freely moving the same camera around. Compared to the previous work, we propose a principled approach that does not make heuristic assumptions about the planarity of the scene. We leverage a monocular depth estimate and predict relative pose between cameras, then align the reference image to the target by a differentiable 3D reprojection and a joint optimization of relative pose and depth map scale and offset. Our approach achieves state-of-the-art performance on both RealEstate10K and MannequinChallenge dataset with large baselines, complex geometry and extreme camera motions. We experimentally verify our approach is also better at handling large holes.