论文标题

排名分布的统计深度功能:定义,统计学习和应用

Statistical Depth Functions for Ranking Distributions: Definitions, Statistical Learning and Applications

论文作者

Goibert, Morgane, Clémençon, Stéphan, Irurozki, Ekhine, Mozharovskyi, Pavlo

论文摘要

为了提供排名数据的统计摘要,即实现有限集的随机置换$σ$,$ \ \ {1,\; \ ldots,\; n \} $ with $ n \ geq 1 $说。由于它仅将灯光放在$σ$的发行$ p $的一个方面时,它可能会忽略其他内容丰富的功能。本文的目的是根据此类数量来定义分位数,等级和统计程序的类似物,以通过基于度量的对称组的深度函数概念分析排名数据。克服了$ \ mathfrak {s} _n $上缺乏向量空间结构,后者定义了$ p $支持的排列的中心顺序排列,并扩展了基于经典的共识排名的经典配方(然后相对应与最深度排列相对应)。列出了排名深度应拥有的公理属性,同时研究了计算和泛化问题。除了进行理论分析之外,许多数值实验也支持了针对各种统计任务的新型概念和方法的相关性。

The concept of median/consensus has been widely investigated in order to provide a statistical summary of ranking data, i.e. realizations of a random permutation $Σ$ of a finite set, $\{1,\; \ldots,\; n\}$ with $n\geq 1$ say. As it sheds light onto only one aspect of $Σ$'s distribution $P$, it may neglect other informative features. It is the purpose of this paper to define analogs of quantiles, ranks and statistical procedures based on such quantities for the analysis of ranking data by means of a metric-based notion of depth function on the symmetric group. Overcoming the absence of vector space structure on $\mathfrak{S}_n$, the latter defines a center-outward ordering of the permutations in the support of $P$ and extends the classic metric-based formulation of consensus ranking (medians corresponding then to the deepest permutations). The axiomatic properties that ranking depths should ideally possess are listed, while computational and generalization issues are studied at length. Beyond the theoretical analysis carried out, the relevance of the novel concepts and methods introduced for a wide variety of statistical tasks are also supported by numerous numerical experiments.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源