论文标题
理查森外推的优化减轻量子错误
Optimization of Richardson extrapolation for quantum error mitigation
论文作者
论文摘要
量子误差缓解是基于当前嘈杂中间量表量子(NISQ)设备开发实际应用的关键概念。最有前途的方法之一是理查森外推到零噪声限制。尽管其主要想法相当简单,但理查森外推的全部潜力尚未完全被发现。我们对理查森外推的相关参数进行了深入的分析,并为其实施提出了优化的协议。该协议允许精确控制统计不确定性的增加,并为通过增加节点数量而实现的缓解性能的显着改善奠定了基础。此外,我们提出了一组新颖的节点,平均而言,这些节点的表现通常超过线性,指数或Chebyshev节点,而不需要任何其他资源。
Quantum error mitigation is a key concept for the development of practical applications based on current noisy intermediate scale quantum (NISQ) devices. One of the most promising methods is Richardson extrapolation to the zero noise limit. While its main idea is rather simple, the full potential of Richardson extrapolation has not been completely uncovered yet. We give an in-depth analysis of the relevant parameters of Richardson extrapolation and propose an optimized protocol for its implementation. This protocol allows for a precise control of the increase in statistical uncertainty and lays the foundation for a significant improvement of the mitigation performance achieved by increasing the number of nodes. Furthermore, we present a novel set of nodes that, on average, outperforms the linear, exponential or Chebyshev nodes frequently used for Richardson extrapolation without requiring any additional resources.