论文标题

通过基于频域的特征分离和相互作用的域概括

Domain Generalization via Frequency-domain-based Feature Disentanglement and Interaction

论文作者

Wang, Jingye, Du, Ruoyi, Chang, Dongliang, Liang, Kongming, Ma, Zhanyu

论文摘要

适应分布数据的数据是对所有统计学习算法的元挑战,这些算法强烈依赖于I.I.D.假设。它导致不可避免的人工成本和在现实应用中的信心危机。为此,域的概括旨在从多个源域中的挖掘域 - 欧元知识知识,这些知识可以推广到看不见的目标域。在本文中,通过利用图像的频域,我们独特地处理了两个关键观察:(i)图像的高频信息描绘了对象边缘结构,该信息保留对象的高级语义信息自然是在不同域之间一致的,并且(ii)低频率的组件使该信息保持平稳结构,而该信息则是可观的转变,以启用该信息。在上述观察的激励下,我们引入了(i)图像的高频率和低频特征的编码器结构,(ii)一种信息交互机制,以确保两个部分的有效知识可以有效合作,(iii)在频域上有效的新型数据增强技术,以促进频率的功能不合时宜地构成频率的功能,从而使得频率不佳。提出的方法在三个广泛使用的域概括基准(Digit-DG,Office-home和pac)上获得了最先进的性能。

Adaptation to out-of-distribution data is a meta-challenge for all statistical learning algorithms that strongly rely on the i.i.d. assumption. It leads to unavoidable labor costs and confidence crises in realistic applications. For that, domain generalization aims at mining domain-irrelevant knowledge from multiple source domains that can generalize to unseen target domains. In this paper, by leveraging the frequency domain of an image, we uniquely work with two key observations: (i) the high-frequency information of an image depicts object edge structure, which preserves high-level semantic information of the object is naturally consistent across different domains, and (ii) the low-frequency component retains object smooth structure, while this information is susceptible to domain shifts. Motivated by the above observations, we introduce (i) an encoder-decoder structure to disentangle high- and low-frequency feature of an image, (ii) an information interaction mechanism to ensure the helpful knowledge from both two parts can cooperate effectively, and (iii) a novel data augmentation technique that works on the frequency domain to encourage the robustness of frequency-wise feature disentangling. The proposed method obtains state-of-the-art performance on three widely used domain generalization benchmarks (Digit-DG, Office-Home, and PACS).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源