论文标题
一步绑架性多目标学习,以及多种嘈杂的标签样品
One-Step Abductive Multi-Target Learning with Diverse Noisy Label Samples
论文作者
论文摘要
提出了一步绑架性多目标学习(OSAMTL)来处理复杂的嘈杂标签。在本文中,给出了不同的嘈杂标签样品(DNL)的定义,我们建议使用DNLS(OSAMTL-DNLS)的一步绑架多目标学习,以扩展原始OSAMTL的方法论,以更好地处理复杂的噪声标签。
One-step abductive multi-target learning (OSAMTL) was proposed to handle complex noisy labels. In this paper, giving definition of diverse noisy label samples (DNLS), we propose one-step abductive multi-target learning with DNLS (OSAMTL-DNLS) to expand the methodology of original OSAMTL to better handle complex noisy labels.