论文标题

实验性大型喷气火焰的几何特征提取风险管理,使用红外图像和深度学习分割方法

Experimental Large-Scale Jet Flames' Geometrical Features Extraction for Risk Management Using Infrared Images and Deep Learning Segmentation Methods

论文作者

Pérez-Guerrero, Carmina, Palacios, Adriana, Ochoa-Ruiz, Gilberto, Mata, Christian, Casal, Joaquim, Gonzalez-Mendoza, Miguel, Falcón-Morales, Luis Eduardo

论文摘要

喷气火灾相对较小,在工厂可能发生的各种火灾事故中产生最小的严重影响;但是,它们通常参与称为多米诺骨牌效应的过程,该过程会导致更严重的事件,例如爆炸或引发另一场火灾,这使得对这种火灾的分析成为风险分析的重要组成部分。这项研究工作探讨了深度学习模型在一种替代方法中的应用,该方法使用喷射火焰的语义分割来提取主要的几何属性,与火灾风险评估有关。传统图像处理方法与一些最先进的深度学习模型之间进行了比较。发现最好的方法是一种被称为UNET的深度学习架构,以及其两种改进,即关注UNET和UNET ++。然后,这些模型用于分割一组不同的管道出口直径的垂直喷射火焰,以提取其主要的几何特性。注意UNET在火焰的高度和面积的近似中获得了最佳的一般性能,同时也显示出IT和UNET ++之间的统计学显着差异。 UNET获得了提升距离近似的最佳总体表现;但是,没有足够的数据来证明注意力UNET和UNET ++之间具有统计学上的显着差异。 UNET ++胜过其他模型的唯一实例是,以0.01275 m的管道出口直径获得喷气火焰的升降距离。通常,探索的模型显示出在声音和亚音速方案中释放的相对较大的湍流丙烷喷气火焰的实验和预测值之间的良好一致。因此,使这些辐射区分割模型,这是一种适合不同喷气火焰风险管理方案的合适方法。

Jet fires are relatively small and have the least severe effects among the diverse fire accidents that can occur in industrial plants; however, they are usually involved in a process known as the domino effect, that leads to more severe events, such as explosions or the initiation of another fire, making the analysis of such fires an important part of risk analysis. This research work explores the application of deep learning models in an alternative approach that uses the semantic segmentation of jet fires flames to extract main geometrical attributes, relevant for fire risk assessments. A comparison is made between traditional image processing methods and some state-of-the-art deep learning models. It is found that the best approach is a deep learning architecture known as UNet, along with its two improvements, Attention UNet and UNet++. The models are then used to segment a group of vertical jet flames of varying pipe outlet diameters to extract their main geometrical characteristics. Attention UNet obtained the best general performance in the approximation of both height and area of the flames, while also showing a statistically significant difference between it and UNet++. UNet obtained the best overall performance for the approximation of the lift-off distances; however, there is not enough data to prove a statistically significant difference between Attention UNet and UNet++. The only instance where UNet++ outperformed the other models, was while obtaining the lift-off distances of the jet flames with 0.01275 m pipe outlet diameter. In general, the explored models show good agreement between the experimental and predicted values for relatively large turbulent propane jet flames, released in sonic and subsonic regimes; thus, making these radiation zones segmentation models, a suitable approach for different jet flame risk management scenarios.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源