论文标题

通过减少分离当事方的总数来构建真正纠缠的多部分子空间

Construction of genuinely entangled multipartite subspaces from bipartite ones by reducing the total number of separated parties

论文作者

Antipin, K. V.

论文摘要

具有某些特征的真正纠缠的多方子空间的构建已成为量子信息各个分支中的一项相关任务。在这里,我们表明可以从与其相邻子系统的连接下的两分纠缠子空间的任意集合中获得此类子空间。另外,可以表明,在某些条件下,此类结构的直接总和是真正的纠缠。然后,这些事实用于检测混合状态的张量和构建每个两部分切割的子空间的键合产品的纠缠,在此中,对于前一个应用,我们包括一个例子,分析了从两个Werner State获得的三方态的真实纠缠。

Construction of genuinely entangled multipartite subspaces with certain characteristics has become a relevant task in various branches of quantum information. Here we show that such subspaces can be obtained from an arbitrary collection of bipartite entangled subspaces under joining of their adjacent subsystems. In addition, it is shown that direct sums of such constructions under certain conditions are genuinely entangled. These facts are then used in detecting entanglement of tensor products of mixed states and constructing subspaces that are distillable across every bipartite cut, where for the former application we include example with the analysis of genuine entanglement of a tripartite state obtained from two Werner states.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源