论文标题
提示:学习网络应用程序的动态资源分配策略
PROMPT: Learning Dynamic Resource Allocation Policies for Network Applications
论文作者
论文摘要
越来越多的服务提供商正在探索通过共同安排高优先级延迟至关重要的工作负载,以改善服务器利用率并减少功耗。这种做法需要在工作量之间进行严格的资源分配,以减少争执并维持服务质量(QoS)的保证。先前的工作证明了基于工作负载需求动态分配资源的有希望的机会,但由于资源分配悬崖的存在,工作负载绩效中的瞬态波动以及资源需求迅速变化,可能无法在更严格的操作环境中实现QoS目标。因此,我们提出了提示,这是一种新型的资源分配框架,使用主动QoS预测来指导增强学习控制器。提示可以使更精确的资源优化,对瞬态行为的更一致的处理以及在策略培训期间未遇到的新最佳工作负载时更加一致的概括。评估表明,所提出的方法违反了4.2倍,违反QoS的严重程度减少了12.7倍,改善了最佳工作量的工作量,并提高了先前工作的总体功率效率。
A growing number of service providers are exploring methods to improve server utilization and reduce power consumption by co-scheduling high-priority latency-critical workloads with best-effort workloads. This practice requires strict resource allocation between workloads to reduce contention and maintain Quality-of-Service (QoS) guarantees. Prior work demonstrated promising opportunities to dynamically allocate resources based on workload demand, but may fail to meet QoS objectives in more stringent operating environments due to the presence of resource allocation cliffs, transient fluctuations in workload performance, and rapidly changing resource demand. We therefore propose PROMPT, a novel resource allocation framework using proactive QoS prediction to guide a reinforcement learning controller. PROMPT enables more precise resource optimization, more consistent handling of transient behaviors, and more robust generalization when co-scheduling new best-effort workloads not encountered during policy training. Evaluation shows that the proposed method incurs 4.2x fewer QoS violations, reduces severity of QoS violations by 12.7x, improves best-effort workload performance, and improves overall power efficiency over prior work.